AEROLOGICAL OBSERVATIONS

[Aerological Division, D. M. LITTLE, in charge]

By L. T. SAMUELS

Free-air temperatures during December averaged lowest over the northeastern section of the country, and highest over the extreme southern stations (see table 1). Departures from normal at those stations having a sufficiently long record for the determination of normals were negative with the exception of Omaha and Pearl Harbor where positive departures occurred. In all cases the temperature departures were of small to moderate magnitude. Free-air relative humidities averaged highest over the northwestern and northeastern parts of the country, and lowest over the extreme south, with a secondary minimum over the middle Pacific coast.

Free-air wind resultants were close to normal in direction. They were below normal in velocity over most northern stations, and above normal over the southern stations.

Table 1.—Free-air temperatures and relative humidities obtained by airplanes during December 1934

Temperature (° C.)

					TEM	PERAT	UKE	(- 0.)										
	Altitude (meters) m. s. l.																	
Challeng	Surface		500		1,000		1,500		2,000		2,500		3,000		4,000		5,	000
Stations	Mean	Depar- ture from normal	Mean	Depar- ture from normal	Mean	Depar- ture from normal	Mean	Depar- ture from normal	Mean	Depar- ture from normal	Mean	Depar- ture from normal	Mean	Depar- ture from normal	Mean	Depar- ture from normal	Mean	Depar ture from norms
billings, Mont.¹ (1,088 m) boston, Mass.² (6 m) beyenne, Wyo.¹ (1,873 m) argo, N. Dak.¹ (274 m) celly Field (San Antonio), Tex.³ (206 m) dakehurst, N. J.⁴ (39 m) datchel Field (Montgomery), Ala.³ (52 m) ditchel Field (Hempstead, L. I.), N. Y.³ (29 m) durfreesboro, Tenn.¹ (174 m) Norfolk, Va.⁴ (10 m) bklahoma City, Okla.¹ (391 m) Dearl Harbor, Territory of Hawaii ⁴ (6 m) Pensacola, Fla.⁴ (24 m) cott Field (Belleville), Ill.³ (135 m) elfridge Field (Mount Clemens), Mich.³ (177 m) pokane, Wash.⁵ (596 m) dunnyvale, Calif.⁴ (10 m) Vashington, D. C.⁴ (13 m) Vsghington, D. C.⁴ (13 m)	-3.6 -3.9 -2.9 -12.9 8.2 -2.0 4.1 -2.7 0.8 3.7 1.1 -5.4 21.6 5.0 10.7 -3.4 -3.9 0.7 8.9 1.1	-0.7 (6) -2.7 -5.5 -2.1	-5.3 -12.6 11.7 -1.5 6.4 -3.5 1.8 3.7 2.8 -5.3 21.2 6.9 13.7 -1.5 -3.6	-0.3 (6) +0.5 -3.8 +0.4	-7.0 -10.9 11.7 -3.7 6.0 -4.8 0.4 1.9 5.5 -3.7 17.8 6.2 12.5 -0.6 -4.7 0.9 8.9 -0.7 -3.3	-0.7 -0.8 +0.8 -3.9 -0.1	-0.1 -9.5 -7.7 10.8 -4.6 6.0 -5.9 0.1 4.8 -1.0 6.6 9.7 -1.2 -5.7 0.6 7.4 -2.2 -4.3	-0.9 +1.6 +0.4 -2.4 -0.8		-1.1 +1.7 +0.6 -1.5 -1.4	-3.5 -12.2 -0.9 -10.1 -7.7 -8.9 4.2 -9.0 -2.3 -4.5 -1.3 4.6 4.2 -9.0 -2.7 3.0 -4.7	-1. 1 +1. 8 +0. 8 -1. 1 -1. 7	-7.1 -14.4 -3.9 -12.4 5.9 -11.1 2.2 -11.5 -4.4 -4.3 -2.2 -6.9 8.7 2.5 -6.1 -10.9 -5.5 0.3 -6.5 -8.8	-1.1 +1.8 +0.4 -1.0 -1.9	-13. 5 -19. 6 -9. 4 -17. 8 -0. 3 -15. 4 -3. 4 -16. 1 -8. 2 -9. 8 -7. 9 -11. 9 3. 3 -2. 1 -4. 2 -10. 5 -15. 8 -11. 9 -5. 6 -13. 5	-1. 2 +2. 0 +0. 4 -0. 6 -1. 7	-20.1 -27.5 -16.0 -24.2 -7.3 -22.9 -8.2 -22.3 -14.6 -15.3 -18.1 -1.7 -7.5 -10.2 -15.9 -22.2 -22.2 -218.7 -11.7 -15.7 -15.7 -15.7	-1 +1 +0 -0 -1
	<u> </u>	!	1	RELA	TIVE	HUMI	DITY	(PERC	ENT)		!		!	1	l		1	<u> </u>
Billings, Mont.¹ (1,088 m) Joston, Mass.² (6 m) Jargo, N. Dak.¹ (274 m) Sally Field (San Antonio), Tex.³ (206 m) Askelurst, N. J.⁴ (39 m) Aswell Field (Montgomery), Ala.³ (52 m) Mitchel Field (Hempstead, L. I.), N. Y.³ (29 m) Jurfreesboro, Tenn.¹ (174 m) Norfolk, Va.⁴ (10 m) Diklahoma City, Okla.¹ (391 m) Johnaha, Nebr.¹ (300 m) Pensacola, Fla.⁴ (24 m) an Diego, Calif.⁴ (10 m) Jostott Field (Belleville), Ill.³ (135 m) Jelfridge Field (Mount Clemens), Mich.³ (177 m) Jostott Field (Belleville), Ill.³ (135 m)	88 87 84 83	-1 (*) +11 -10 +15	69 84 71 78 67 66 72 61 74 84 84 61 66 69 77	-1 (°) +4 -13 +8	78 57 75 59 62 70 56 61 75 80 54 57 60 72 83 52 59	-2 +12 +3 -12 +9	56 69 64 47 70 46 56 56 51 53 61 74 49 63 74 44 55 60	0 +4 +5 -16 +12	52 64 59 58 40 65 40 51 51 57 63 47 57 63 47 53 47 53 47 53 44 53 43 43 43 43 43 43 43		52 58 53 55 64 38 51 48 43 43 54 43 32 47 44 63 37 44 44 63	0 -2 +6 -19 +15	54 56 52 51 36 62 36 41 40 52 54 41 40 40 62 31 40 40 40 40 41 40 40 40 40 40 40 40 40 40 40 40 40 40	+1 5 +8 18 +15	53 55 49 50 57 34 45 36 45 37 51 43 40 38 38 40 37 43 40 43 43 40 43 43 43 43 43 43 43 43 43 43 43 44 43 44 43 44 43 44 44		50 41 44 48 255 31 47 35 35 49 43 25 40 39 38 6 37 35 35 40 40 40 40 40 40 40 40 40 40 40 40 40	+

Observations taken about 5 a. m., 75th meridian time, except along the Pacific coast and Hawaii where they are taken at daylight.

Weather Bureau.
 Massachusetts Institute of Technology.
 Army.
 Navy.
 National Guard.
 Surface and 500-meter level departures omitted because of difference in time of day between airplane observations and those of kites upon which the normals are based.

MONTHLY WEATHER REVIEW

LATE REPORTS FOR NOVEMBER 1934

TEMPERATURE (° C.)

Olavi.	Altitude (meters) m. s. l.																	
	Surface		500		1,000		1,500		2,000		2,500		3,000		4,000		5,000	
Stations	Mean	Depar- ture from normal	Mean	Depar- ture from normal	Mean	Departure from normal	Mean	Depar- ture from normal	Mean	Depar- ture from norma								
Pearl Harbor, Territory of Hawaii (6 m)	22. 5	-3.2	21. 9	+0.2	18. 6	+0.8	15. 3	+0.2	13. 9	+0.8	12. 2	+1.0	9.8	+0.8	4.0	+0.7	-0.6	+0.7
				RELA	TIVE	HUMI	DITY	(PERC	ENT)									
Pearl Harbor, Territory of Hawaii (6 m)	84	+15	81	+7	82	+4	82	+9	73	+8	64	+9	58	+12	50	+12	47	+15

Table 2.—Free-air resultant winds (meters per second) based on pilot-balloon observations made near 7 a.m. (E.S. T.) during December 1934 [Wind from N=360°, E=90°, etc.]

									[11 1441	110111	.4 – 500	, = 0	o , occ.	ı 										
Altitude (m) m. s. l.	que, N	Albuquer- que, N, Mex. (1,554 m)		tlanta, . (309 m) Bismarck, N. Dak. (518 m)		Browns- ville, Tex. (7 m)		Burlington, Vt. (132 in)		Chevenne, Wyo. (1,873 m)		Chicago, Ill. (192 m)		Cleveland, Ohio (245 m)		Dallas, Tex. (154 m)		Havre, Mont. (762 m)		Jackson- ville, Fla. (14 m)		Key Wes Fla. (11 n		
	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity
Surface		1. 7 	314 314 285 293 285 274 262	1. 8 3. 5 6. 0 8. 0 10. 3 12. 7 13. 4	9 313 295 296 294 300 293	1. 1 7. 5 8. 6 12. 4 11. 8 13. 2	9 321 156 161 211 230 264 283 278 276	0. 2 3. 8 3. 0 2. 9 3. 7 4. 4 5. 8 8. 2 9. 1	223 249 285 296 301 300 293	0. 8 3. 8 8. 0 10. 5 10. 0 12. 3 12. 0	281 282 285 288 300	5. 3 7. 6 13. 7 13. 0 12. 9	277 284 287 281 270 292 312	2. 5 3. 7 4. 6 5. 9 5. 2 9. 3 9. 6	234 235 246 250 255 271 279 280	1. 8 4. 6 6. 4 8. 1 8. 8 10. 0 7. 6 10. 2	0 14 256 286 300 302 294 288 280	0. 1 4. 4 6. 6 7. 7 9. 1 10. 9 13. 0 13. 5	253 262 281 288 294 291 296	3. 0 5. 6 10. 0 9. 3 10. 5 11. 8 11. 3	321 368 260 267 271 277 273	1. 4 2. 8 5. 1 7. 0 9. 6 11. 0 12. 5	39 82 116 113 213 250 227 182	2. 6 3. 7 3. 2 1. 3 0. 6 1. 7 2. 3 3. 8
Altitude (m)	geles,	Los Angeles, Calif. Oreg. (410 m)		Memphis, Tenn. (83 m)		New Or- leans, La. (19 m)		Oakland, Calif. (8 m)			homa Okla. ! m)	Om Ne (306	br.	Pho A1 (338	iz.	City,	Lake Utah 4 m)	Ma M	t Ste. rie, ich. 3 m)	Sear Wa (14	sh.	Wasi ton, (10	hing- D. C. m)	
Altitude (m) m. s. l.	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity
Surface	6 39 59 59 41 4 345 330	1. 4 1. 5 2. 2 2. 1 1. 2 2. 8 4. 7 5. 7	183 246 170 205 229 253 275 244	0.5 0.2 2.8 3.3 2.9 3.4 3.9 5.7	271 264 264 284 287 286 275	0. 3 3. 4 6. 3 7. 4 9. 0 11. 9 13. 7	14 331 290 283 281 279 272	2. 1 1. 1 4. 0 5. 5 7. 3 8. 3 10. 8	68 23 10 354 357 359 341 286	0. 9 4. 7 5. 4 4. 1 5. 6 7. 3 6. 5 3. 8	283 286 296 290 286 286 278 266	0. 7 2. 2 6. 2 7. 4 9. 4 10. 3 11. 3 14. 2	9 343 312 298 288 282 285 278	1. 8 2. 4 5. 5 6. 4 8. 8 10. 2 7. 9		1. 6 3. 2 2. 5 2. 6 0. 8 1. 5 2. 5 4. 2 5. 9	188 205 241 255 297	1. 6 2. 7 2. 3 3. 3 5. 3 4. 5	56 6 301 316 309 316 348 335	1. 3 1. 2 3. 2 4. 9 6. 6 6. 6 8. 0 13. 6	9 196 208 220 232 242 231 243	3. 2 6. 7 6. 1 7. 0 9. 3 8. 7 10. 5	305 305 305 311 309 304 303	1, 6 5, 7 6, 8 9, 5 11, 3 12, 5

AEROLOGICAL OBSERVATIONS FOR THE YEAR 1934

[Aerological Division, D. M. LITTLE in charge]

By L. T. SAMUELS

In July the number of airplane weather observation stations was materially increased in consequence of the cooperative program of the Navy and War Departments and the Weather Bureau. A total of 24 such stations, including 1 at Boston operated by the Massachusetts Institute of Technology and 1 at Toronto operated by the Canadian Meteorological Service, were making observations at the end of 1934. The total number of pilotballoon stations in operation by the Weather Bureau at the end of 1934 was 76, an increase of 2 over the previous year.

Only those stations having a year's record are included in table 1. Free-air temperatures averaged mostly above normal except at the stations along the Gulf and eastern seaboard, where negative departures occurred. Free-air relative humidities averaged above normal except at Omaha and Seattle, where they averaged below normal.

Omaha and Seattle, where they averaged below normal.

During the International month of January, the
Weather Bureau released 46 sounding balloons at Omaha,
Nebr. Ninety-six percent, i. e., 44, of the meteorographs were found and returned.